2.28
\[\frac{e^{2}/\gamma - 1/\gamma}{e^{2}/\gamma + 1/\gamma} = e^{1/\gamma - \phi} \]

The wave equation \(\phi \) in the region below the reflecting layer has the form:

\[\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} \]

2.27
The wave equation \(\phi \) in the region above the reflecting layer has the form:

\[\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} \]

Solving this system of linear equations in implicit form:

\[\frac{\partial}{\partial x} (\phi'') - \gamma \phi' = \phi \]

and \(\gamma = 2 \)

2.26
\[\frac{\partial}{\partial x} (\phi'') + \gamma \phi' = \phi \]

2.25
The requirement of continuity of \(\phi \) and \(\phi' \) leads to:

\[\frac{\partial}{\partial x} (\phi'') + \gamma \phi' = \phi \]

2.24
\[\frac{\partial}{\partial x} (\phi'') + \gamma \phi' = \phi \]

2.23
\[\frac{\partial}{\partial x} (\phi'') + \gamma \phi' = \phi \]

2.22
\[\frac{\partial}{\partial x} (\phi'') + \gamma \phi' = \phi \]

2.21
\[\frac{\partial}{\partial x} (\phi'') + \gamma \phi' = \phi \]

2.20
\[\frac{\partial}{\partial x} (\phi'') + \gamma \phi' = \phi \]

Thus, the drawn lines decay exponentially in the windows \(\gamma \) and \(\phi \) and the modes localized at the poles and nodal points:

\[\frac{\partial}{\partial x} (\phi'') + \gamma \phi' = \phi \]

We now turn our attention to \(\phi \) in multilayer systems containing an infinite number of interfaces from the visible surface to the incidence interface in the multilayer systems containing an infinite number of interfaces from the visible surface.
Euclidean Spaces

Models in a plane with quadratic descriptors. Figure 5

![Graph](https://via.placeholder.com/150)

Figure 5.

- **Dispersion relation of the coupled odd and even modes for an inhomogeneous medium.**

\[
\omega = \frac{\beta}{\gamma} \pm \frac{\sqrt{\beta^2 - 4\gamma\omega}}{2\gamma}
\]

where \(\omega\) is the frequency, \(\beta\) is the real part of the group velocity, \(\gamma\) is the imaginary part of the group velocity, and \(n\) is the medium's refractive index. The dispersion relation describes the propagation of light in inhomogeneous media.