University of Illinois

Urbana Champaign

Electrical and Computer Engineering

 
  [ HOME ]  
 
 
PUBLICATIONS
2016
         
76. "Multiplexed infrared photodetection using resonant radio-frequency circuits" R. Liu, R. Lu, C. Roberts, S. Gong, J. W. Allen, M. S. Allen, B. R. Wenner, and D. Wasserman, Appl. Phys. Lett., 108, 061101 (2016).   77. "Epsilon-Near-Zero Photonic Wires", R. Liu, C. Roberts, Y. Zhong, V.A. Podolskiy, D. Wasserman, ACS Photonics, DOI: 10.1021/acsphotonics.6b00120        
2015
           
74."Engineering the reststrahlen band with hybrid plasmon/phonon excitations", W. Streyer, K. Feng, Y. Zhong, A. Hoffman, and D. Wasserman, MRS Commun., 2015.            
     
70. "Localized surface phonon polariton resonances in polar gallium nitride" , K. Feng, W. Streyer, S.M. Islam, J. Verma, D. Jena, D. Wasserman and A.J. Hoffman, Appl. Phys. Lett., 107, 081108 (2015)   71. "Photonic materials, structures and devices for Reststrahlen optics", K. Feng, W. Streyer, Y. Zhong, A.J. Hoffman, and D. Wasserman, Opt. Express,23, A1418 (2015)   72. " Mid-infrared electroluminescence from InAs type-I quantum wells grown on InAsP/InP metamorphic buffers ", D. Jung, L. Yu, D. Wasserman and M.L. Lee, J. Appl. Phys., 118, 183101 (2015)   73 ."Enhanced Optical Transmission through MacEtch-Fabricated Buried Metal Gratings", R. Liu, X. Zhao, C. Roberts, L. Yu, P.K. Mohseni, X. Li, V. Podolskiy, and D. Wasserman, Adv. Mater.
    image of FIG. 1.  
66. “Platinum germanides for mid- and long-wave infrared plasmonics”, J.W. Cleary, W.H. Streyer, N. Nader, S. Vangala, I. Avrutsky, B. Claflin, J. Hendrickson, D. Wasserman, R.E. Peale, W. Buchwald, R. Soref, Optics Express, 23, 3316-3326 (2015).   67. "Review of mid-infrared plasmonic materials", Y. Zhong, S. Devi Malagari, T. Hamilton, and D. Wasserman, J. Nanophoton. 9, 093791 (2015).   68. "Direct minority carrier transport characterization of InAs/InAsSb superlattice nBn photodetectors", D. Zuo, R. Liu, D. Wasserman, J. Mabon, Z.-Y. He, Y.-H. Zhong, E.A. Kadlec, B.V. Olsen, and E.A. Shaner, Appl. Phys. Lett., 106, 071107 (2015)   69. "Selective absorbers and thermal emitters for far-infrared wavelengths ", W. Streyer, K. Feng, Y. Zhong,A.J. Hoffman, and D. Wasserman, Appl. Phys. Lett., 107, 081105 (2015)
2014
Figure            
65. “Designing Near IR Plasmonic Nanoantennas Based on Au Bowtie Nanoantenna Arrays”, H. Chen, A.M. Bhuiya, R. Liu, D. Wasserman, and K.C. Touissant, Jr., J. Phys. Chem. C, 118, 20553 (2014).            
image of FIG. 5.      
61. “Controlling quantum dot energies using submonolayer bandstructure engineering”, L. Yu, D. Jung, S. Law, J. Shen, J.J. Cha, M.L. Lee, D. Wasserman,  Appl. Phys. Lett., 105, 081103 (2014).   62. “Flat mid-infrared composite plasmonic materials using lateral doping-patterned semiconductors ”, A. Rosenberg, J. Surya, R. Liu, W. Streyer, S. Law, L. Suzanne Leslie, R. Bhargava, D. Wasserman,  J. Opt., 16, 094012 (2014).   63. Editorial for Special Issue on mid-infrared and THz photonics, D. Wasserman, R. Singh, and T. Akalin, J. Opt., 16, 090201 (2014)   64. “Mid-infrared emission from In(Ga)Sb layers on InAs(Sb)”, R. Liu, Y. Zhong, L. Yu, H. Kim, S. Law, J.-M. Zuo, and D. Wasserman, Optics Express, 22, 24466 (2014).
    image of FIG. 2.   image of Fig. 4.
57. "All-Semiconductor Negative Indesx Plasmonic Absorbers"   S Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E.A. Shaner, V.A. Podolskiy, D Wasserman, Phys. Rev. Lett., 112, 017401 (2014).   58. "Epsilon-near-zero enhanced light transmission through a subwavelength slit", S. Inampudi, D. C. Adams, T. Ribaudo, D. Slocum, S. Vangala, W.D. Goodhue, D. Wasserman, and V. A. Podolskiy, Phys. Rev. B, 89, 125119 (2014)   59. "Engineering absorption and blackbody radiation in the far-infrared with surface phonon polaritons on gallium phosphide", W. Streyer, S. Law, A. Rosenberg, C. Roberts, V.A. Podolskiy, A.J. Hoffman, and D. Wasserman, Appl. Phys. Lett., 104, 131105 (2014)   60. “Doped semiconductors with Band-Edge Plasma Frequencies”, S. Law, R. Liu, D. Wasserman, J. Vac. Sci. Technol. B, 32, 05260 1-7 (2014).
 
2013
Abstract Image          
55. "All-Semiconductor Plasmonic Nanoantennas for Infrared Sensing ", S. Law, L. Yu, A. Rosenberg, and D. Wasserman, Nano Lett., online   56. "Selective thermal emission from thin-film metasurfaces", W Streyer, S Law, J Mason, DC Adams, T Jacobs, G Rooney, D Wasserman, SPIE NanoScience+ Engineering, Proc. SPIE 8808, p. 88080V-88080V-12, 2013        
figure
 
figure
  Abstract Image  
51. "Direct observation of minority carrier lifetime improvement in InAs/GaSb type-II superlattice photodiodes via interfacial layer control", D. Zuo, P. Qiao, D. Wasserman, and S.L. Chuang, Appl. Phys. Lett., 102, 141107 (2013)   52. "Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy", J.R. Felts, S. Law, C.M. Roberts, V. Podolskiy, D. Wasserman, and W.P. King, Appl. Phys. Lett., 102, 152110 (2013)   53. "Wafer-Scale Production of Uniform InAsyP1–y Nanowire Array on Silicon for Heterogeneous Integration", J.C. Shin, A. Lee, P.K. Mohseni, D.Y. Kim, L. Yu, J.H. Kim, H.J. Kim, W.J. Choi, D. Wasserman, K.J. Choi, and X. Li,, ACS Nano, (2013)   54. "Degenerately doped InGaBi:As as a highly conductive and transparent contact material in the infrared range", Optics Materials Express, 3, 1197 (2013).
    figure  

48. Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics, S. Law, V. Podolskiy, and D. Wasserman, Nanophotonics,(2013)

 

  49. "Making the mid-infrared nano with designer plasmonic materials", S. Law, J. Felts, C. Roberts, V.A. Podolskiy, W.P. King, D. Wasserman, Proc. SPIE 8555 (2012).   50. "Epitaxial growth of engineered metals for mid-infrared plasmonics", S. Law, L. Yu, D. Wasserman, J. Vac. Sci. Technol. B, 31, 03C121 (2013).   51. "Strong absorption and selective emission from engineered metals with dielectric coatings", W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, Optics Express, 21, 9113 (2013)
2012
     
44. “Strong coupling of molecular and mid-infrared perfect absorber resonances”, J.A. Mason, G. Allen, V. podolskiy, and D. Wasserman, IEEE Photonics Technology Letters, 24, 31 (2012)   45.  "Mid-infrared designer metals", S. Law, D.C. Adams, A.M. Taylor, and D. Wasserman, Optics Express, 20, 12155 (2012)   46. "Electroluminescence from Nanosphere Lithography Fabricated Quantum Dots", L. Yu, S. Law, D. Wasserman, Appl. Phys. Lett., 101, 103105 (2012)   47. "2.8 lm emission from type-I quantum wells grown on InAsxP12x/InP metamorphic graded buffers", D. Jung, Y. Song, L. Yu, D. Wasserman, and M.L. Lee, Appl. Phys. Lett., 101, 251107 (2012)
2011
           
43. “Enhanced Light Funneling Through Subwavelength Apertures Using Epsilon Near Zero Metamaterials”, D.C. Adams, N. Inampudi, T. Ribaudo, D. Slocum, N. Kuhta, S. Vangala, W. Goodhue, V.A. Podolskiy, and D. Wasserman, Phys. Rev. Lett., 107, 133901 (2011).

 

           
     
39.  “Observation of Rabi-Splitting from Surface Plasmon Coupled Conduction-State Transitions in Electrically-Excited InAs Quantum Dots”, B.S. Passmore, W.W. Chow, D.C. Adams, T. Ribaudo, S.A. Lyon, D. Wasserman, and E.A. Shaner, Nano-Letters, Jan (2011).

 

  40. "Multiscale beam evolution and shaping in corrugated plasmonic systems" S. Thongrattanasiri, D. C. Adams, D.Wasserman, and V. A. Podolskiy, Optics Express, 19, 9269 (2011).  

41. "Strong absorption and selective thermal emission from a midinfrared metamaterial" J.A. Mason, S. Smith, and D.Wasserman, Appl. Phys. Lett., 98, 241105 (2011).

Link to APL abstract

 

42. "Voltage-controlled active mid-infrared plasmonic devices" K. Anglin, T. Ribaudo, D.C. Adams, X. Qian, W.D. Goodhue, S. Dooley, E.A. Shaner and D. Wasserman, J. Appl. Phys., 109, 123103 (2011).

Link to JAP abstract

2010
 
 
 
38.  “Selective Thermal Emission from Patterned Steel ”, J. Mason, D.C. Adams, Z. Johnson, S. Smith, A.W. Davis, and D. Wasserman, Optics Express, 18, 25912 (2010)   37.  “Plasmonic mid-infrared beam steering”, D.C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, Appl. Phys. Lett., 96, 201112 (2010).   36.  “Active Mid-Infrared Plasmonic Beam Steering Devices”,  D.C. Adams, T. Ribaudo, S. Thongrattanasiri, E.A. Shaner, V. Podolskiy, and D. Wasserman, Proc. SPIE, 7756-41 (2010).   35.  "High-optical-quality nanosphere lithographically formed InGaAs quantum dots using molecular beam epitaxy assisted GaAs mass transport and overgrowth", X. Qian, S. Vangala, D. Wasserman, and W.D. Goodhue., J. Vac. Sci. Technol. B, 28(3), C3C9 (2010).
2009
     
34.  “Spectral and spatial investigation of mid-infrared surface waves on a plasmonic grating”, T. Ribaudo, D.C. Adams, B. Passmore, E.A. Shaner and D. Wasserman, Appl. Phys. Lett., 94 201109 (2009).   33.  "Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb”, B.S. Passmore, D.G. Allen, S. R. Vangala, W.D. Goodhue, D. Wasserman, and E.A. Shaner, Opt. Express, 17 10223 (2009).   32.  “Active Control and Spatial Mapping of Mid-Infrared Propagating Surface Plasmons”, T. Ribaudo, E.A. Shaner, S.S. Howard, C. Gmachl, X. Wang, F.-S. Choa, and D. Wasserman, Opt. Express, 17, 7019 (2009).   31.  “Active Control of Propagating Waves on Plasmonic Surfaces”, T. Ribaudo, E.A. Shaner, S.S. Howard, C. Gmachl, X.J. Wang, F.-S. Choa, and D. Wasserman, Proc. SPIE 7221-24, 2 (2009).
 
 
   
30.  "Room temperature midinfrared electroluminescence from InAs quantum dots", D. Wasserman, T. Ribaudo, S.A. Lyon, S.K. Lyo, E.A. Shaner, Appl. Phys. Lett., 94, 061101 (2009).   29.  “Loss mechanisms in mid-infrared extraordinary optical transmission gratings”, T. Ribaudo, K. Freitas, E.A. Shaner, J.G. Cederberg, D. Wasserman, Opt. Express 17 666 (2009).   28.  "High k-space lasing in a dual-wavelength quantum cascade laser”, K.J. Franz, S. Menzel, A.J. Hoffman, D. Wasserman, J.W. Cockburn and C. Gmachl, Nature Photonics, 3, 50 (2009).    
pre-2009

27.  "Active Surface Plasmons: Tuning of Surface Plasmons leads to new optoelectronic devices", Laser Focus World, January 2008.

26.  "Uniform InGaAs quantum dot arrays fabricated using nanosphere lithography", X. Qian, J. Li, D. Wasserman, W.D. Goodhue, Appl. Phys. Lett., 93, 231907 (2008).

25.  “Current-tunable mid-infrared extraordinary transmission gratings”, E.A. Shaner, J. Cederberg, D. Wasserman, Appl. Phys. Lett., 91, 181110 (2007)

24.  Mid-Infrared doping tunable extraordinary transmission from sub-wavelength gratings”, D. Wasserman, E.A. Shaner, and J.G. Cederberg, Appl. Phys. Lett., 90, 191102 (2007)

23.  “Negative Refraction in Semiconductor Metamaterials” A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, and C. Gmachl, Nature Materials, Published online Oct. 14th, 2007.

22.  “Narrow width, low-ridge configuration for high-power quantum cascade lasers”, A. Lyahk, P. Zory, D. Wasserman, G. Shu, C. Gmachl, D. Bour Appl. Phys. Lett., 90, 141107 (2007)

21.  “Evidence of cascaded emission in a dual-wavelength quantum cascade laser”, K.J. Franz, D. Wasserman, A.J. Hoffman, D.C. Jangraw, K.-T, Shiu, S.R. Forrest, and C. Gmachl, Appl. Phys. Lett., 90, 091104 (2007)

20.  “Multiple wavelength polarized mid-infrared emission from InAs quantum dots”, D. Wasserman, C. Gmachl, S.A. Lyon, and E.A. Shaner, Appl. Phys. Lett. Vol. 88, p.191118 (2006).

19.  ”High-Performance Quantum Cascade Lasers: Optimized Design through Waveguide and Thermal Modeling”, S. S. Howard, Z. J. Liu, D. Wasserman, A. Hoffman, T. Ko, C. F. Gmachl,IEEE J. Select. Topics Quantum Electron., 13, 1054 (2007).

18.  “Room Temperature Continuous-wave Quantum Cascade Lasers Grown by MOCVD without Lateral Regrowth”, Z. Liu, D. Wasserman, S.S. Howard, A.J. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and Fow-Sen Choa, IEEE Photonics Technology Letters, vol. 18, p.1347 (2006).

17.  “Anomalous spin polarization of GaAs two-dimensional hole systems”, R. Winkler, E. Tutuc, S.J. Papadakis, S. Melinte, M. Shayegan, D. Wasserman, and S.A. Lyon, Phys. Rev. B, vol. 72, p.195321 (2005).

16.  “Stimulated electronic Anti-Stokes Raman emission in Quantum Cascade lasers”, A. A Gomez-Iglesias, D. Wasserman, C. Gmachl, A. Belyanin, and D.L. Sivco, Appl. Phys. Lett., vol. 87, p. 261113 (2005).

15.  “6 nm half-pitch lines and 0.04μm2 static random access memory patterns by nanoimprint lithography”, M.D. Austin, W. Zhang, H.X. Ge. D. Wasserman, S.A. Lyon, and S.Y. Chou, Nanotech., Vol 8, p.1058 (2005).

14.  “Cleaved-edge overgrowth of aligned quantum dots on strained layers of InGaAs”, D. Wasserman and S. A. Lyon, Appl. Phys.Lett., Vol 85, p.5352 (2004).

13.  “Scanning near-field photoluminescence mapping of (110) InAs-GaAs self-assembled quantum dots”, M. Hadjipanayi, A.C. Maciel, J.F. Ryan, D. Wasserman, and S.A. Lyon, Appl. Phys. Lett., Vol.85, p.2535 (2004).

12.  “Fabrication of 5nm linewidth and 14 nm pitch features by nanoimprint lithography”, Michael D. Austin, Haixiong Ge, Wei Wu, Mingtao Li, Zhaoning Yu, D. Wasserman, S.A. Lyon, and Stephen Y. Chou, Appl. Phys. Lett., Vol 84, p.5299 (2004).

11.  “Formation of self-assembled quantum dots on (110) GaAs Substrates”, D. Wasserman, S.A. Lyon, M. Hadjipanayi, A. Maciel, and .F. Ryan, Appl. Phys. Lett.. Vol. 83, p.5050 (2003).

10.  “Negative differential Rashba effect in two-dimensional hole systems”, B. Habib, E. Tutuc, S. Melinte, M. Shayegan, D. Wasserman, S.A. Lyon, and R. Winkler, Appl. Phys. Lett., Vol. 85, p.3151 (2004).

9.  “Characterization of GaAs grown by molecular beam epitaxy on vicinal Ge(100) substrates”, A. Wan, V. Menon, S.R. Forrest, D. Wasserman, S. A. Lyon, and A. Kahn, J. Vac. Sci. Technol. B, Vol.22, p.1893 (2004).

8.  “Spin splitting in GaAs (100) two-dimensional holes”, B. Habib, E. Tutuc, S. Melinte, M. Shayegan, D. Wasserman, S. A. Lyon, and R. Winkler, Phys. Rev. B, Vol.69, p.113311 (2004).

7.  “Mid-infrared luminescence from InAs quantum dots in unipolar devices”, D. Wasserman and S.A. Lyon, Appl. Phys. Lett., Vol. 81, p.2848 (2002).

6.  “Doping Tunable Enhanced Extraordinary Optical Transmission Gratings”, D. Wasserman, J. Cederberg, and E.A. Shaner, Proc. SPIE 6760, 67600A (2007).

5.  “MOCVD growth and regrowth of quantum cascade lasers”, F.-S. Choa, L. Cheng, X. Ji, Z. Liu, D. Wasserman, S.S. Howard, C.F. Gmachl, X. Wang, J. Fan, and J. Khurgin, Proc. SPIE 6485, 64850N (2007).

4.  “Mid-infrared electroluminescence from InAs quantum dots”, D. Wasserman, S.A. Lyon, C. Gmachl, J. Cederberg, and E.A. Shaner, Proc. SPIE Vol. 6386, 63860E (2006)

3.  "Mid-infrared electroluminescence from InAs quantum dots in p-n junctions and unipolar tunneling structures” D. Wasserman and S.A. Lyon, Physica Status Solidi B, Vol. 224, p.585 (2001).

2.  “Electroluminescence from III-V self-assembled quantum dots”, D. Wasserman and S.A. Lyon, Book Chapter for "The Handbook of Electroluminescent Materials", edited by Prof. D.R. Vij, Department of Physics, Kurukshetra University, India, Institute of Physics Publishing, Bristol, U.K (2004).

1.  “110 InAs Quantum Dots: Growth, Single-Dot Luminescence and Cleaved Edge Alignment”, D. Wasserman, E.A. Shaner, S.A. Lyon, M. Hadjipanayi, A.C. Maciel, and J.F. Ryan, MRS Fall 2004 Meeting Proc. “Progress in Compound Semiconductor Materials IV--Electronic and Optoelectronic Applications”, Vol. 829, (2005).